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ELASTIC-PLASTIC BEHAVIOUR OF SPHERICAL
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Abstract— This paper considers the clastic-plastic behaviour of thick-walled spheres under internal
pressure. Material behaviour is assumed as: ¢ = Y+ A - &} where Y is an initial yield stress and A
and n are material parameters describing the state of hardening. Radial distributions of plastic
strains are determined in closed form for four particular values of the exponent n; n =1, 12, 1/3
and 1/4. On the basis of these solutions and a study of practical values of the hardening parameters
A and n, a simple approximate relation for plastic strain distribution, which can be used for any
value of n1, is developed. Validity of the approximate solution is verified and its range of applicability
is investigated.

INTRODUCTION

Interest into the clastic-plastic behaviour of thick spherical and cylindrical shells under
internal and external pressures, radial thermal gradients and body forces has never ceased
(Bland, 1956; Carroll, 1985 Gamer, 1987, 1988 ; Johnson and Mcllor, 1980). Plasticity
problems with spherical or cylindrical symmetry can usually be treated analytically, par-
ticularly when simplifying assumptions are made regarding material hardening and the
reader is referred to Johnson and Mcllor (1980) for various interesting assumptions in this
area.

Bland (1956) developed analytical solutions for thick-walled tubes made from materials
with lincar hardening properties and subject to internal and external pressure, and to
temperature gradients. Gamer (1988) considered the clastic—plastic behaviour of a thick
spherical shell under internal pressure using the same hardening law as the one employed
here and developed analytical solutions for two values of the exponent u, viz. n = 1/2 and
n = 2. It is rather strange to take the exponent 2 = 2 since n is usually less than unity for
enginecring metals. The results reported by Gamer (1988) reveal peculiar stress distributions
in the vicinity of the plastic front due to the consideration of hardening parameters A and
n which are not representative of common alloys. Gamer's treatment (1988) of the problem
is based on Bland’s work (1956) which expresses the unknown quantities in terms of the
effective stress. However, Gamer's solution (1988) is different from and much simpler than
Bland’s (1956).

In the present work, the clastic-plastic problem of a thick spherical shell under internal
pressure is formulated in a manner which is equivalent to those used by Guamer (1988),
Bland (1956) and Bishop ¢r al. (1945). However, in the present formulation, the unknown
quantitics are expressed in terms of effective plastic strain rather than in terms of effective
stress.

Practical ranges of the hardening parameters 4 and n in the hardening law are deter-
mined by studying the uniaxial behaviour of about 20 alloys. It is scen that 0 < n < 1 with
n = 1/3 being representative of muny cnginecring alloys, as reported by Rees (1987a,b).
Thus, the initial objective of the present work is to develop solutions which are applicable
to the observed practical values of the hardening exponent n. Hence, closed form expressions
are obtained for plastic strain distribution (in terms of plastic front and a hardening function
H,) for four particular values of n, viz. n = 1. 1/2. 1/3 and 1/4. Distributions of radial
displacement, tangential and radial stresses can be obtained in closed form for # = 1 and
n = 1/2 but only and in semi-closed form forn = /3 and n = 1/4.
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Study of the practical range of parameter A4 in the hardening law shows that its value
is such that the flow stress at plastic strain = Y; £ does not exceed two times the initial vield
stress Y. Taking this observation into account and carefully inspecting the forms of the
analytical distributions of plastic strain at n = 1, 1/2. 13 and 1/4, enable determination of
an approximate general relation for plastic strain distribution which can be used at any
value of the exponent n. The accuracy of this approximation is assessed and its ranges of
validity are determined.

BASIC EQUATIONS

Consider a thick spherical shell with inner radius = a and outer radius = b, subjected
to internal pressure P and causing partial plastification. The stress components are @, g,
and ¢, and the total strain components are &,. & and #. Total strains are decomposed
into elastic and plastic components and small strains are assumed. The stress—strain—
displacement relations are:

du |

6= = plo.—v@to+ef (1a)
u »

b =-=_[o,—~v(a,+0,)]+¢) (Ib)
r F

where w is the radial displacement, r is the generic radius and £ and v are the elastic
constants. Compressibility is retained in the clastic range but incompressibility of plastic
strains requires that 2+ = 0. The yiclding criterion is the same according to cither
Tresca or Von Mises; 6 = g,—a, where 6 s the cffective stress. Equations (la,b) are
inverted in order to express stresses in terms of total strains and plastic hoop strain, as
follows

o, = E[(1 =v)* (&, — &) + 206, — 1)) (2a)
ou = E{(6s— ) +v(e, — ), (2b)

where £ = E/[(1+v) - (1 —2v)]. Substitution of eqns (2a, b) into the equilibrium condition
da,/dr = 2 (a,—a,)/r yiclds the following differential equation:

d*u 2 du 2u 200=2w) [ def &)
iU St R y “1 3
dr* " r dr r? I —v [dr +3r 9
Introducing the substitutions:
U= uju (4a)
X =djr, (4b)

which implies that X = | atr = ¢and X = X, = a/batr = b, and carrying out the necessary
algebraic manipulations yield the solution of eqn (3) as:

C . =2
U=;‘—,+DX + ¥ (5a)
where
(v
I=2F —dX (5b)
¢

with
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E=—; (5¢)

where C and D are integration constants to be determined from the boundary conditions:
6,= —Pat X=1and s, =0 at X = X,;,. Upon substitution of the resulting values of C
and D into the expressions of displacement, radial and hoop stresses and introducing the
further substitution:

Z = X’, Zo lYO (6)
the following expressions are obtained :

g, =—P+ ——l N (P-1)+! (7a)
=0+ -»——Z—(P l)—E-&f 7b
=0Ty Iz, TR (7)
l P-1I 1
= (=20, +1 (- oz | —
U E[(l v)+o,+ 5 (1 V)l—Z(, Z] :/Z (7c)

and the integral 7is:

z l,r"
1=1E| %4z 7d
,LZ "
and /, is the value of 7 at the plastic front, Z = Z. i.c.
2
el
I, = }EJ. é' (7¢)

Note that &5 = 0 and I = [, throughout the outer elastic zone defined by Z, < Z < 2. At
the plastic front, the effective stress ¢ = g,—0, = Y and also ¢} = 0. Therefore, using eqn
{7b) to provide &, one readily obtains:

P—1 y Z“ 8
0 =13 5 8)

Using eqn (8). the distributions of o, 6, and U can be rewritten in simpler forms, as follows :

I A
6,=_p+;}’-——z. +1 (9a)

zZ .
Oy =0,+ Y[‘Z- —85] (9b)

U=JE—_|:(I—7V)0 +(l—=v)- Y- Z] (9c)

\/—2'

where £} is a normalized plastic hoop strain such that:
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e

.P — |
£, = i (9d)

'

[t is obvious from eqn (9b) that the effective stress 4 is simply given by :

;= Y-(Z *) 10
g = ?_8" - ( )

[t is important to notice that eqns (9a. b and ¢) are valid throughout the entire sphere,
with the provision that [ = I, and & = 0 within the elastic zone. Hence, determination of
the entire field of elastic—plastic stresses is reduced to the evaluation of integral /, once the
radial distribution of plastic strains is prescribed by means of the hardening law.

A hardening law that has proved to be most relevant in the analysis of small strain
plasticity problems is:

G=Y+A (&), (n

where A and n are material constants and &, is the effective plastic strain. This particular
hardening law is preferred to other non-linear hardening representations due to its con-
sistency with observed material behaviour. Note, for example, thit the plastic strain is zero
and the plastic modulus is infinite at the initial yield, which allows modeclling of the observed
smooth clastic-plastic transition.

Table 1 lists the values of Y, A and # for a number of engincering alloys as compiled
by Megahed (1989). It is clear that the exponent n lies between 0.1 and 0.7, i.c. nis less
than unity. In order to characterize the effect of hardening on the flow curve, a hardening
function #is delined as the rise in flow stress above the initial yield at a plastic strain equal
10 Y/E. Henee, the effective stress 6 at £, = Y/ E is given by

G=Y(l+H) (12a)

/‘ Y '
— . 2
II-Y () (12b)

Values of H are calculated in Table | where it is scen that H is always less than unity.
Clearly, perfect plasticity behaviour is obtained when # = 0.

Rees (19874, b) compiled values of A/ Y and n for a number of alloys and concluded
that n = 1/3 can be considered representative of many engineering metals as can be seen

and His defined as:

Table I. Hardening properties of some common alloys (Megahed, 1Y89)

No. Material Yt AY n EY 1 H,
I Ti 7A1 2Cb I Ta Alloy 500 1.35 0.190 210 0.489 0.521
2 2024-T3 Aluminium 200 2.80 0.206 360 0.883 0.893
3 316 Stainless steel 100 3.65 0.223 1176 0.754 0.813
4 A316 Steed 221 1.67 0.251 936 0.300 0.326
S AS33 PV Steel 330 0.45 0.120 627 0.208 0.216
6 60,40 Brass 140 243 0.300 821 0.324 0.359
7 304 Stainless steel 150 5.53 0.445 1333 0.225 0.261
8 99.9% Pure copper 28 8.83 0.373 4167 0.372 0422
9  6061-O Aluminium 50 16.40 0.629 1280 0.182 0.225

10 Steel $-25C3 320 184 0.710 647 0.039 0.049

t The yield stress }is in MPaand Poisson™s ratio is assumed as 0.3 for all matenals.
$ This material exhibits yield point elongation of about 2% and therefore its hardening curve is
represented by ¢ = Y+ 4 (£, —8,)" where £, = 0.02.
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Table 2. Hardening properties compiled by Rees (1987a.b)

No. Material AY n E Yt H H,
1 SAE 1020 Steel 4.09 1:3 1000 0.409 0.458
2 14S-T4 Aluminium 3154 13 400 0.480 0.537
3 24S-T4 Aluminium 224 1/3 400 0.304 0.340
4 BS-MSI 60,40 Brass 3.49 [.3 1000 0.349 0.390
5 RR 59 Aluminium 2.39 13 800 0.257 0.288
6 Ti S0A Titanium 2 0.450 400 0.251 0.292
7 EN 32B Steel 1.30 0.17 1000 0.402 0.425
8 EIA Aluminium 15.18 0.562 800 0.355 0.428
9 2014 T4 Aluminium 222 0.300 400 0.368 0.407
10 EN 24 Steel 6.79 0.738 1000 0.042 0.053
11 EN 25 Steel R 0.664 1000 0.034 0.042

t Poisson’s ratio is assumed as 0.3 for all materials and reasonable approximae values
are assumed for E/'Y.

from Table 2. Again, values of the hardening function # are determined and found to be
always less than unity. It is worth noting that quite small values of H can be obtained at
relatively large values of the hardening exponent 7 coupled with small values of 4/Y. This
can be clearly seen from the data of 6061-O aluminium, EN 24 and EN 25 steels given in
Table 2.

ANALYTICAL SOLUTIONS FOR PLASTIC HOOP STRAIN
The effective plastic strain in the sphere problem is &, = 2¢) and hence the hardening
law can be rewritten in terms of the normalized plastic hoop strain, &), as:

= Y[l +H(ED, (13a)

where H, represents the hardening function for the sphere problem and defined as:

A (2YY
H, = ¥ (Z‘) (13b)

Values of H, are determined for the material constants listed in Tables 1 and 2 and found
to be less than unity. A comparison between the expressions for effective stress provided
by eqns (10) and (13a) yiclds the tollowing non-lincar equation in &

H‘(é,’,')"+:3,’,'—<§—l> = 0. (14)

One of the real roots of eqn (14) should provide the radial distribution of plastic hoop
strain. The roots cannot be determined analytically except for some particular values of n.
Analytical solutions arc provided here fora =1, 1/2, [/3 and 1/4,

For n = 1, eqn (14) is linear and £} is given by:

[ Z
AR R c
£y i H,(’f l). (15a)

where H, = (A/Y). (2QY/E) = 24/E is the hardening function at # = 1. The integral [ is
evaluated as:
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2y [z-1
~ 0+ [——Z —In z]. (15b)

The value of I, is determined by setting Z = Z in eqn (15b) and by substitution into eqn
(8): the plastic front Z is related non-linearly to the applied pressure P. All the necessary
information has now been established to determine stresses and displacement, according to
eqns (9a. b and c).

For n = 172, eqn (14) is quadratic and only one of its roots satisfies the prerequisite,
g5 = 0, at the plastic front. This root is:

Z Z
T Y TE 0 < 1+ iy ,
& 5 |+ 3H; - H, > 1+ 3H;. (16a)

where H, = (4/Y). \/2 Y/E is the hardening function for n = 1/2. The integral / can be
evaluated analytically in this case also, as follows:

2¥[z-1 z ! .
="l T oy - < Y7250 R L2
I = 3[ > (I1-YH)iInZ 2H‘<\/Z 1+ 3H; \/Z I+¢H‘>
- Z(  H) S HY
+2H‘-\/l~}Il;-<urcos\/z<l—A;‘)—arcos\/l(l-—z»))]. (16b)

The value of [, = /(Z) and eqn (8) is used to provide the non-lincar relation between
pressure and plastic front.
For n = 1/3, eqn (14) becomes a cubic equation taking the following form:

(:3,’,')‘—3(2 - 1)-(:3,’,‘)#[3(5 - I).+Ilf]£,’,'—(,/l - l) =0, (17a)

where H, = (A;Y). (2Y/E)" Vis the hardening function at # = 1/3. The discriminant of
cqn (17a) 1s

N

W s (2N
ER VA

which is clearly greater than zero, indicating one real root and two imaginary roots. The
real root provides the distribution of & as:

v _Z U farr (2N ifz N\
}:’,;=Z-—l+H‘.[2\/27m+<Z-—l)_?,(;Z_I):]
1 A;{-}‘.—-—...Z.:___,._: 1 (Z 13
_fl‘-[i\/37-+(§—l>+§(?_l)] . (17b)

The analytical evaluation of integral [ is rather difficult in this case and we have to resort
to numerical intcgration.
In the case of n = 1/4, eqn (14) becomes a quartic equation taking the following form:

[15514—4@ - l)[é,’,’]"+6<§ - 1).[5,',’ - [4@ - 1) +H3:‘-rt,',’+ @ - x) =0, (l8a)
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where H = (4/Y)- (2Y/E)' *is the hardening function corresponding to n = 1/4. It can be
shown that eqn (18a) possesses two real roots and two imaginary roots with only one of
its real roots satisfying the prerequisite that £§ = 0 at the plastic front. This root is given
by:

3
§£=§-—|+K[l- Hf_z—l]. (18b)

where

o)

]
—
&
—

N
w fl\h
~—~
+
—
b
S~——r
+
~
N
~——
—

, ZjZ-ty (HY [(HN]?
~ue[ (%2 S5 -(%]" 0so

Similar to the case of n = 1/3, the analytical evaluation of integral [ is difficult if not
impossible in this case and has to be determined numerically.

It is worth noting that the well-known perfect plasticity solution is retrievable from any
of the above solutions by letting the hardening function H, = 0. This serves as verification
of the above results. It is worth noting that for a given plastic front, the distributions of a,,
oy and u can be determined in closed form for n = | and n = 1/2, only because integral / is
evaluated analytically in these cases. Forn = 1/3and n = 1/4, integral / cannot be evaluated
analytically. ,

The above solutions can be used to study the influence of hardening (as expressed by
H_and m) on the distribution of clastic-plastic stresses induced in the sphere. A spherical
shell, with b/a = 2 and clastic constants £/Y = 1000 and v = 0.3, is considered. First, the
shell is assumed to be fully plasticized, i.c. 7 = b = 2a. Radial distributions of ¢, and o, are
shown in Figs La, b, cand d for v =1, 172, /3 and 14, respectively. For cach value of
n, stresses are determined at six values of H viz, H, =0,0.2, 0.4, 0.6, 0.8 and . It is seen
that for a given value of n, tangential stress increases and radial stress deereases as a result
of increasing the hurdening function, H,. The pressure carrying capacity (o, at r = a) is
substantially increased as H, increases, particularly at large values of the exponent n.

Figures 2a, b, ¢ and d present a similar set of results for the same shell as above
when partially plasticized up to 7 = 1.6a. The influences of H, and n are similar to those
observed in Fig. 1, except that the pressure carrying capacity does not seem to be affected
by n for a given value of H,. Figure 3 summarizes the influence of A, and non ¢, and g, at
r = a for the fully plasticized shell (Fig. 3a) and the partially plasticized shell (Fig. 3b).

AN APPROXIMATE GENERAL SOLUTION

Careful inspection of the analytical solutions obtained earlier for £ at the four values
of n enable the development of a gencral approximate solution that can be used at any
value of n. The approach here is based upon the observation that practical values of H, are
always less than unity and often less than 0.5 for many engincering alloys, as can be seen
from Tables 1 and 2.

Consider firstly, eqn (16a) which provides the exact radial distribution of & forn = 1/2.
Since H, < 1, then fractions of # appearing in eqn (16a) can be considered small enough
in comparison with (Z/Z — 1), particularly at radii far enough from the plastic front. Thus,
neglecting H}/2 and H}/4 yields the following approximate expression for &) at n = 1/2:

& =(ZIZ-V)—=H,-(ZIZ-1)"*. (19a)

Consider eqn (17b) which provides the exact distribution of & for n = 1/3. Neglecting the
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o /v

-3 + + + 1
10 1.2 14 18 183 20

l‘/ll
[ (d)
Fig. 1. Distributions of radial and tangential stresses in a fully plasticized shell (7 = 2a) at various

viduesof Hoand n: )y n =L (byn =172,y n = /3, and (d) n = 1/4.

term 44 /27 in comparison with (Z/Z —1)? yields the following approximate expression
for &l atn=1/3:

&= (2|72 =H (Z]Z=1)"". (19b)

Consider now, egqns (18b and ¢) which provide the exact distribution of &) for n = 1/4. In
eqn (18¢), neglecting (H /4)* with respect to ((Z/Z—1)/3)" in the square root term yields:

Sy ﬁ){[ L’_’i‘_‘)ﬁ]“"‘_[ _L’L@i]"’}
K 3H,<3 4 -] (19¢)

where (Z/Z — 1) is denoted by . Since (H,/4)*/(¢/3)* 7 is much less than unity at radii far
enough from the plastic front, expansion of the cubic root terms by (1 +x)" =~ I +m - x for
x « | and simplifying yicld :

oo (H34)?  HY (ZZ-1)"7

S ZZo AT s (154

Substitution into eqn (18b) gives:
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%

-1

+ + + + 1
10 12 14 1.4 18 2.0

o v/ -
Fig. 2. Distributions of radial and tangential stresses in a partially plasticized shell (7 = 1.6a) at
vartous vidues ol Hoand i ¢ - Lobyn < 122 ¢y T and e - 124,
- H H,  pmi—mreees
o —_ i ‘¥ 5 32 B
by = (Z1Z—=W)+ g —oops| - = S(Z]L=1)""—=(1/[4)-|. 19¢
A R AN AN R UND (19¢)

Neglecting (#,/4)* with respect to (Z/Z— 1)V in the square root term and also neglecting
H,/4 with respect to (Z/Z—1)** in the resulting expression yield the final approximate
relation as:

i =(ZI1Z-V)=HAZ]Z-1)"". (191)

[t is worth noting that eqn (15a), which gives the exact distribution of &f for n =1, can
also be rewritten as:

& =(Z|Z-1)-H(2/Z-1), (19g)
provided that H, « 1 such that 1/(1+ H,) >~ | — H,. Therefore, at relatively large values of
H,, the approximation provided by eqn (19g) will be poor atn = 1.

Inspection of eqns (19a, b, f and g) reveals that a simple general pattern is emerging
for approximate description of & at any value of the exponent n, viz.

& =(Z/Z=1)~H,~(Z]Z~1)". (20)

A number of important points are worth noting at this stage:
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¥ L 1 2 1 i T

P I . - -1 -

2 p

.

.6

T

17\—-_..______—
0.2 h -2 G lr=al /Y a-Pry ]

21

3 08 3

1

-
-

la} T=z2a (b} T=z16a

Fig. 3. Influence of #, and n on stresses at the inner radius of the shell (e =2, £ Y = 1000,
v = 0.3). (a) Fully plasticized and (b) partially plasticized.

(1y The first term in egn (20) is the well-known perfect plasticity solution for .
Thercfore, the second term represents a quantification of the inhibition of plastic strain
development due to hardening.

(2) Neglecting fractions of positive powers of H, in comparison with positive powers
of (Z/Z - 1) is quite valid at radii located too far from the plastic front. However, at radii
close to the plastic front, (Z/Z — 1) also becomes very small and the above approximation
is not strictly valid. The resulting errors in &7 are not likely to be great since £ itself is quite
small in the vicinity of the plastic front.

(3) Inspection of eqn (20) indicates that £/ = 0 at two valuesof Z: at Z = Z, i.c. at
the plastic front and also at Z = Z* where

Z* = Z{I+H/ ). @n

This implies that £ is negative in the zone bounded by Z < Z < Z*. Since negative
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8 L 1 ¥ T T
n=1/4 n=1/3

(%)

(F-F*) /7

0 a1 0.2 0.3 04 05

Fig. 4. Variation of (F—r*}/F (%) with H, and n.

plastic strain cannot be permitted. & will be taken as zero in the zone bounded by

Z < Z < Z*. Therefore, a clearer statement of the approximate solution will be:

& =(Z/Z~-V)-HJ(ZIZ-1) for Z*<Z<| (22a)
& =0 for Z2<Z<2Z* (22b)

The ratio Z/Z* can be very close to unity depending on #, and n. Figure 4 shows the
variation of the relative difference between 7 and #* (corresponding to Z and Z*, respec-
tively), with H, at various values of #. Generally, the relative error is quite small with its
value becoming larger as H, increases and n decreases simultancously. At n = 1, note that
(r—r*)/F = 0, whatever the value of £/,. Since the approximate solution has been shown to
be poor at n =1 when relatively large values of /1, are encountered [sce eqn (19g)], it
appears that the proximity between £* and 7 cannot be used alone as a sole measure of the
accuracy of the proposed approximate solution.

(4) Although eqn (20) is derived here, starting from exact solutions at some particular
values of the exponent n, it is belicved that the above approximation is valid for any value
of n as it probably amounts to a first approximation to the solution of the non-lincar
refation provided by eqn (14). A detatled compuarison between exact and approximalte
solution is presented in the following.

COMPARISON BETWEEN EXACT AND APPROXIMATE SOLUTIONS

A comparison between the exact solutions developed earlier and the approximate
solution is llustrated for a tube with bla =2, Fla=2, E/Y = 1000 and v = 0.3. A rep-
resentative value of H, = 0.3 is adopted and the comparison is made for three different
values of the exponent o n = 12, 1 3 and 1.4 as shown in Figs 5a, b and ¢, respectively.
In general, agreement between exact and approximate distributions of a,, o, and & is
quite satisfactory. The maximum discrepancy in g, and £ is confined to the vicinity of the
plastic front while the maximum discrepancy in g, is at the inner radius of the sphere.

An overall picture of the performance of the approximate solution is provided by the
results given in Table 3, which compares the pressure carrying capacity as predicted by
exact and approximate solutions for a fully plasticized shell (h/a = 2, E/Y = 1000, v = 0.3)
at various values of H, and n. The pressure predicted by the approximate solution exceeds
the exact pressure slightly. Figure 6a shows the percentage error in pressure against M, at
n=1,1/2, 1/3 and 1/4. The errors in approximate pressure are seen not to be excessive,
except when H, and n become relatively large. Notice in particular, the poor performance
of the approximate solution at n = | when H, exceeds about 0.2,

§A§ 27-12-C
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,I — exact solution
// ----- approximate solution 0 + —t + + 0
-2' 1 1 1 [ J ] 1 I
1 1.2 14 16 1.8 2 1 12 1.4 1.6 18 2
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Fig. Sa. Comparison between exact and approxinmate solutions for a sphere with b = 2, Fla = 2
and material parameters: =03 n = /2 'Y = 1000 and v = 0.3

T T T T
1 7+ 1°
6
&
5
exact solution
0 - -~ - approximate solution I3
L
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z 3 2_
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Q.UO E
-1} 2 ~
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L..,
1+
T/ Y
exact solution
..... approximate solution 0 0
-2 I L 1 1 1 1 1 1
1 1.2 1.4 1.6 18 2 1 12 1.4 1.6 1.8 2
r/a r/a

Fig. 5b. Comparison between exact and approximate solutions for a sphere with bia = 2, fla =2
and material properties: H, =0.3.n=1/3, £'Y = 1000 and v = 0.3,
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exact solution

———= Qpproximate solution
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exact solution
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4
4
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1 1.2 14 16 18 2 1 1.2 14 16 18 2
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Fig. S5¢. Comparison between exact and approximte solutions for a sphere with bja = 2, Fla =2

and material properties: #, = 0.3, n = 1[4, E/Y = 000 and v = 0.3.

Table 3. Approximate/exact pressure (£P/Y) for a fully plasticized sphere with bja = 2,
E'Y = 1000 and v = 0.3

n iH, =01

0.2

0.3

0.4

0.5

14 1.543/1.539

1.69%/1.685

1.850/1.824

1.999/1.955

2.144/2.081

173 1.553/1.548 1.718/1.702 1.882/1.847 2.043/1.984 2.201/2.114
1,2 1.578,1.571 1.769/1.743 1.960/1.903 2.150/2.053 2.337/2.193
l 1.715;1.685 2.043/1.933 23712143 2.698/2.326 3.027/2.480
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Fig. 6u. Variation of percentage error in pressure carrying capacities with H, and n.
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Fig. 6b. Variation of percentage error in work ratios ¥, ‘W, with #, and n.

Table 4. Approximate/exact work ratio M,/ W, for a fully plasticized shell with bla = 2,
E/Y =1000 and v = 0.3

n H, =01 02 03 0.4 0.5

114 1.051/1.051 1.088,1.093 11161124 1133 1148 1.142/1.165
113 1.060,1.061 1.106/1.109 1.138/1.147 1.158°1.174 1.168/1.193
12 1.082/1.081 1.146/1.144 1.189/1.191 1.2141.224 1.221/1.246
[ L176/1.163 1.293/1.261 1.347/1.316 1.340 1.343 1.271;1.351

Another plausible measure of the adequacy of the approximate solution is the ratio
between total internal dissipation of work in a sphere made from a work hardening material
W, and work dissipated in a similar sphere made from a perfectly plastic material W,
Table 4 gives the values of this work ratio as predicted by exact and approximate solutions
for a fully plasticized sphere (b/a = 2, E/ Y = 1000 and v = 0.3} at various values of /, and
the four values of the exponent n (n = 1, 1/2, 1/3 and 1/4). The percentage errors between
exact and approximate values of W, /W, are shown in Fig. 6b aguainst /7 at the different
values of n. The errors in total dissipated work are quite small for n = 1/2, 1/3 and 1/4 but
are highly dependent on H, forn = 1.

The above analysis shows that the approximate solution cun be used with confidence
for values of H, less than about 0.5 and values of the exponent n not close to unity.
Naturally, these limitations can be relaxed depending on the accuracy required. Fortunately,
values of #, and n for many engincering metals lie within the above limits, as can be scen
from the data of Tables | and 2. Adequacy of the approximate solution is checked above
for a fully plasticized shell. For a partially plasticized shell, the accuracy of the approxi-
mation will depend upon the position of the plastic front. Clearly, if (Z/Z — 1) is relatively
small because the plastic front is too close to the tnner radius of the shell, the resulting
errors in the approximate solution may not be tolerated. For these cases of limited plasticity,
one has to rely on the exact solutions provided here for a wide range of the exponent ».

Finally, two examples of the application of the approximate solution to actual materials
arc shown in Fig. 7 for partially plasticized spheres (F'a = 1.8), where actual material data
of 304 stainless steel and 6061-O aluminium are used.

DISCUSSION AND CONCLUSIONS

Exact and approximate distributions of plastic strain in similar elastic—plastic problems
can be obtained in a2 manner analogous to that presented here. An example of such problems
is reported by Megahed (1989) for a thick tube under internal pressure. Loading conditions
such as external pressure, radial thermal gradient and centrifugal forces can be included in
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Fig. 7. Examples of the approximate distributions of stresses and plustic strain in partially plasticized

shells (Fu = 1.8) and using the actual material properties of 304 88 und 6061-0 aluminium.

the analysis. Future work may also include the elastic-plastic unloading behaviour. This
will enable determination of realistic etimates of residual stresses which are usually deter-
mined on the basis of isotropic hardening, which ignores the softening behaviour during
reverse loading as manifested by the Bauschinger effect.

The general approximate solution developed here provides a quick and reliable estimate
of elastic-plastic stresses and displacement for spheres made from the most common
engincering metals. [t is worth noting that the development of the approximate solution
could not have been possible without the exact solutions developed earlier in the paper.
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