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Abstract-This paper considers the clastic-plastic behaviour of thick-walled spheres under internal
pressure, Material behaviour is assumed as: (J = Y+ A . f.~ where Y is an initial yield stress and A
and n are material parameters desl:ribing the state of hardening. Radial distributions of plastic
strains arc determined in dosed form for four partil:ular values of the exponent n; n = I. 1/2. 1/3
and II~. On the basis of these solutions and a study of pral:tical values or the hardening parameters
II and n. a simple appHlsim:lte relation for plastic strain distribution. whil:h can be used for any
value of n. is develuped. Validity uf the approximate solution is verified and its range uf appliGloility
is investigated.

INTRODUCTION

Interest into the c1astil:-plastil: behaviour of thil:k spheril:al and cylindril:al shells under
internal and external pressures, radial thermal gradients and body forces has never l:eased
(Bland, 1956; Carroll. 19X5; Gamer. 19X7. 19X5; Johnson and Mellor. 1980). Plastil:ity
problems with spheril:al or cylindril:al symmetry l:an usually be treated analytil:ally. par
til:ularly when simplifying assumptions arc made regarding material hardening and the
reader is referred to Johnson and Mellor (19XO) for various interesting assumptions in this
area.

Bland (1956) developed analytil:al solutions for thil:k-walled tubes made from materials
with linear hardening properties and subjed to internal and external pressure••tnd to
temperature gradients. Gamer (1988) l:onsidered the elastil:-plastil: behaviour of a thil:k
spherical shell under internal pressure using the same hardening law as the one employed
here and developed analytil:al solutions for two values of the exponent II, viz. II = 1/2 and
n = 2. It is rather strange to take the exponent" = 2 sinl:e n is usually less than unity for
engineering metals. The results reported by Gamer (1988) reveal peculiar stress distributions
in the vicinity of the plastic front due to the consideration of hardening parameters A and
n which arc not representative of common alloys. Gamer's treatment (1988) of the problem
is based on Bland's work (1956) which expresses the unknown quantities in terms of the
etfective stress. However. Gamer's solution (1988) is ditferent from and much simpler than
Bland's (1956).

In the present work. the clastic-plastic problem of a thick spherical shell under internal
pressure is formulated in a manner which is equivalent to those used by G.tmer (1988).
Bland (1956) and Bishop ('( al. (1945). However. in the present formulation. the unknown
quantities are expressed in terms of clTective plastic strain rather than in terms of etfective
stress.

Practical ranges of the hardening parameters A and" in the hardening law are deter
mined by studying the uniaxial behaviour of about 20 alloys. It is seen that 0 < " < I with
n = 1/3 being representative of many engineering alloys. as reported by Rees (1987a. b).
Thus. the initial objective of the present work is to develop solutions which are applicable
to the observed practical values of the hardening exponent n. Hence. closed form expressions
are obtained for plastic strain distribution (in terms of plastic front and a hardening function
HJ for four particular values of II. viz. 11 = I. 1/2. 1/3 and 1/4. Distributions of radial
displacement. tangential and radial stresses can be obtained in closed form for" = I and
n = 1/2 but only and in semi-closed form for n = 1/3 and n = 1/4.
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Study of the practical range of parameter A in the hardening law shows that its value
is such that the flow stress at plastic strain = Y/ E does not exceed two times the initial yield
stress Y. Taking this observation into account and carefully inspecting the forms of the
analytical distributions of plastic strain at n = I, 1/2. 13 and 1/4, enable determination of
an approximate general relation for plastic strain distribution which can be used at any
value of the exponent n. The accuracy of this approximation is assessed and its ranges of
validity are determined.

BASIC EQUATIONS

Consider a thick spherical shell with inner radius = a and outer radius = h. subjected
to internal pressure P and causing partial plastification. The stress components are (T,/. (T"

and (T, and the total strain components are f.". f:" and I:,. Total strains are decomposed
into elastic and plastic components and small strains are assumed. The stress-strain
displacement relations are:

(I a)

(I b)

where II is the radial displacement. r is the generic radius and E and \' arc the elastic
constants. Compressibility is retained in the elastic range but incompressibility of plastic
strains requires that 21:{,' +1::' = O. The yielding criterion is the sallie according to either
Tresca or Von Mises; a = a,,-a,. where a is the clkctive stress. Equations (Ia.b) arc
inverted in order to express stresses in terms of total strains and plastic hoop strain. as
follows:

(T, = £"[(1-\')' (/:, -I::') +21'(1:" -/:{,')J

(TI/ = £"[(/:I/-/:{,') + 1'(/;, -/:;)J,

(2a)

(2b)

where £" = E/[( I + v)· (I - 2v)J. Substitution of egns (2a, b) into the equilibrium condition
da,/dr = 2' (al/-a,)/r yields the following ditferential equation:

~l: + ~ . d~, _ 2~ = _ 2(!.=~~! [d/:{,' +3 c{,'].
d,. r dr" I - v dr r

Introducing the substitutions:

U = II/II

X = air,

(3)

(4a)

(4b)

which implies that X = I at r = a and X = Xu = a/h at r = h, and carrying out the necessary
algebraic manipulations yield the solution of eqn (3) as:

where

with

C .' 1- 21' I
U= ·-+Dx"+--

X E X

I
x p

- co
1= 2£ I x dX

(Sa)

(5b)
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E
t = I-v; (5c)

where C and D are integration constants to be determined from the boundary conditions:
(1, = - P at X = I and (1, = 0 at X = Xo. Upon substitution of the resulting values of C
and D into the expressions of displacement, radial and hoop stresses and introducing the
further substitution:

the following expressions are obtained:

I-Z
(1, = -P+ ---(P-Io)+1

I-Zo

3 Z - p
(1" = 0",+ 2'I-Z

o
(P-Io)-E'6"

I [ 1 P-In ] IU = - (1-2v) '0",+ i' (I-v) --' Z '--=
E I-Zn 1z

and the integral I is:

i
z r"

1= 1£·" dZ
. I Z

and In is the valuc of I at thc plastil.: front, Z = Z. i.c.

r~ c"
In = it:J,i dZ.

(6)

(7a)

(7b)

(7c)

(7d)

(7e)

Note th~lt c~ = 0 and I = In throughout the outer clastic zone defined by Zn < Z < t. At
the plastic front, the etfective stress ri = (ftJ- 0", = Y and also e~ = o. Therefore, using eqn
(7b) to provide ri, one readily obtains:

, I-Zn
P-/n = i Y -"'--.

Z
(8)

Using cqn (8), the distributions of (1", (1, and U can be rewritten in simpler forms, as follows:

, I-Z
0",= -P+iY'-Z+I

0"/1 = 0",+ Y[~ -£~ ]

I[ ZJ IU=- (1-"v)O" +(I-v)·Y' .. -
E -, Z !jZ'

where iii, is a normalized plastic hoop strain such that:

(9a)

(9b)

(9c)
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-p

Cli = YiE' (9d)

It is obvious from eqn (9b) that the effective stress (j is simply given by:

_ . (2 _p)
(J = }'. Z - C" • ( 10)

[t is important to notice that eqns (9a. b and c) are valid throughout the entire sphere,
with the provision that 1= 10 and i: = awithin the elastic zone. Hence, determination of
the entire field of elastic-plastic stresses is reduced to the evaluation of integral I, once the
radial distribution of plastic strains is prescribed by means of the hardening law.

A hardening law that has proved to be most relevant in the analysis of small strain
plasticity problems is:

( II )

where A and 11 arc material constants and [" is the effective plastic strain. This particular
hardening law is preferred to other non-linear hardening representations due to its con
sistency with observed material behaviour. Note. for example, that the plastic strain is zero
and the plastic modulus is infinite at the initial yield, which allows modelling of the observed
smooth elastil.:plastil.: transition.

Tahle I lists the values of Y. A and 11 for a number of engineering alloys as wmpiled
by Megahed (19X9). It is dear that the exponent 11 lies hetween 0.1 and 0.7, i.e. 11 is less
than unity. In order to I.:haracterize the elleet of hardening on the flow curve, a hardening
funl.:tion /I is dclined as the rise in flow stress above the initial yield at a plastil.: strain e4ual
to YI Eo Ilcnl.:c. the eflectivc stress B at i'." = Y/ E is givcn hy:

and fl is dclined as:

(j= }'(I+II)

A(Y)'II = ' ...
Y E

( 12a)

( 12b)

Values of /I arc cakulated in Tablc 1 where it is seen that fl is always less than unity.
Clearly. perfect plasticity behaviour is obtained when fl = O.

Rees (1987a. b) compiled values of AI Y and" for a number of alloys and I.:oncluded
that" = 1/3 can be considered representative of many engineering metals as I.:an be seen

Tahle I. Ilardening properties of some common alloys (Megahcd. IYIN)

No. M.alcrial rt A Y 11 I:'!y 1/ II.

I Ti 7AI :!Ch ITa Alluy 500 1.35 0.190 210 0.4H9 0.521
2 2024-T3 Aluminium 200 2.S0 0.206 360 O.XH3 0.X93
3 316 Stainless steel 100 3.65 0.223 1176 0.754 0.X13
4 A316 Steel 221 1.67 0.251 936 0.300 0.326
5 A533 f)V Sleel 330 0.45 0.120 627 0.20X 0.216
6 6Oi40 Brass 140 2.43 0.300 1121 0.324 0.359
7 304 Stainless steel 150 553 0.445 1333 0.225 0.261
11 99.9% Pure copper 2M !l.!l3 0.373 4167 (Un 0.422
9 6061·0 Aluminium 50 16.40 0.629 1280 O.IH2 0.225

10 Steel S-25q 320 3.84 0.710 647 0.039 0.049

t ThL' vide! strL'SS r is in ~IPa and P"iss"n's ralio is assumed as 0..' f"r all materials.
: This'material e~hihils yidd poinl dongation of ahout 2"/0 and therefore its hardening curve is

represenled hy (T = r + A ' (c p - i:,,)" where ':" = 0.02.
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Table 2. Hardening properties compiled by Rees (1987a. b)

No. Material A Y n EYt H H,

I SAE 1020 Steel 4.09 13 1000 0.409 0.458
2 145-T4 Aluminium 3.54 1:3 400 0.480 0.537
3 245-T4 Aluminium 2.24 1/3 400 0.304 0.340
4 BS-MSI 60/40 Brass 3.49 1.3 1000 0.349 0.390
5 RR 59 Aluminium 2.39 I 3 800 0.257 0.288
6 Ti 50A Titanium 3.72 0.450 400 0.251 0.292
7 EN 32B Steel 1.30 0.17 1000 OA02 0.425
8 EIA Aluminium 15.18 0.562 800 0.355 0.428
9 2014 T4 Aluminium ' " 0.300 400 0.368 0.407

10 EN 24 Steel 6.79 0.738 1000 0.042 0.053
II EN 25 Steel 3.29 0.664 (()OO 0.034 0.042

t Poisson's ratio is assumed as 0.3 for all materials and reasonable apprmimae values
are assumed for E! Y.

from Table 2. Again, values of the hardening function H are determined and found to be
always less than unity. It is worth noting that quite small values of H can be obtained at
relatively large values of the hardening exponent" coupled with small values of AI Y. This
can be clearly seen from the data of 6061-0 aluminium, EN 24 and EN 25 steels given in
Table 2.

ANAL YTiCAL SOLUTIONS FOR PI.ASTIC HOOP STRAIN

The effective plastic strain in the sphere problem is i:r = 21:{,' and hence the hardening
law can be rewritten in terms of the normalized plastic hoop strain, I;{:, as:

where lI, represents the hardening function for the sphere problem and defined as:

II = A. (~~)n, Y E .

(13a)

(13b)

Values of H, are determined for the material constants listed in Tables I and 2 and found
to be less than unity. A comparison between the expressions for effectivc stress provided
by eqns (10) ,lIld (13a) yields the following non-linear equation in /:{;:

( 14)

Onc of the real roots of eqn (14) should provide the radial distribution of plastic hoop
strain. The roots cannot be determined analytically except for some particular valucs of fl.

Analytical solutions are provided here for" = I, 1/2, 1/3 and 1/4.
For n = I, eqn (14) is linear and c{,' is given by:

I;Pj = --'- (~-I), I+H, Z ' ( '5a)

where H, = (..1/ n. (2 Y/ E) = 2..1/E is the hardening function at II = I. The integral I is
evaluated as:
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2Y [Z-I ]
1= 3(1 +H,) "T -In Z . ( 15b)

The value of 10 is detennined by setting Z = Z in eqn (15b) and by substitution into eqn
(8) ; the plastic front Z is related non-linearly to the applied pressure P. All the necessary
information has now been established to detennine stresses and displacement. according to
eqns (9a. b and c).

For n = 1/2. eqn (14) is quadratic and only one of its roots satisfies the prerequisite.
i: = O. at the plastic front. This root is:

.p Z 1 ~ Jz 1 ~
£y = Z-I + ~H, - H, Z-I + 4 H ,. ( 16a)

where H, = (AI n. }2 YIE is the hardening function for n = 1/2. The integral [ can be
evaluated analytically in this case also. as follows:

The value of 10 = [(2) .tnd eqn (Ii) is used to provide the non-linear relation between
pressure amI plastic front.

For fl = 1/3. eqn (14) becollles a cunic equation taking the following form:

( 17a)

whae 11, = (A/y). (2}'/£)' 1 is the hardening function at /I = 113. The discriminant of
eqn ( 17a) is

which is clearly greater than zero, indicating one real root and two imaginary roots. The
real root provides the distribution of I;~' as:

( 17b)

The analytical evaluation of integral I is rather dimcult in this case and we have to resort
to numerical integration.

In the case of n = 1/4. eqn (14) becomes a quartic equation taking the following form:

( ) ( )' [( )' ] ( )4.p 4 Z .r , Z - .p , Z . ,.p Z
[I:,,] -4 Z-I [t.,,]"+6 Z-I [f;o]"- 4 Z-1 +H; .t.,,+ i-I =0. ( 18a)
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where H = (AI Y). (2 Y/ t) I 4 is the hardening function corresponding to n = 1/4. It can be
shown that eqn (1Sa) possesses two real roots and two imaginary roots with only one of
its real roots satisfying the prerequisite that i: = 0 at the plastic front. This root is given
by:

where

op ZI '[1 ~:IJ1:" =-- +K - --
u t 4K>'

(18b)

K~ = !H~'[J(Z/~-I)'+(~'J+(~'YJ)

- ~H,~· [J(Z/~-I)' +(~'J-(~'JJ > (ISc)

Similar to the case of 11 = 1/3. the analytical evaluation of integral I is difficult if not
impossible in this case and has to be determined numerically.

It is worth noting that the well-known perfect plasticity solution is retrievable from any
of the above solutions by letting the hardening function H. = O. This serves as verification
of the above results. It is worth noting that for a given plastic front. the distributions of (1"

(11/ and u can be determined in closed form for 11 = I and n = 1/2. only because integral I is
evaluated analytically in these cases. For n = 1/3 and n = 1/4. integral! cannot be evaluated
analytically.

The above solutions can be used to study the influence of hardening (as expressed by
II, and 11) on the distribution of ebslic-plaslil.: stresses induced in the sphere. A spherical
shell, with hill = 2 and clastic constants £1 Y = 1000 and v =0.3. is considered. First. the
shell is assumed to be fully plasticized. i.e. j =h = 211. Radial distributions of (1, and (1// me
shown in Figs la. b. c and d for II = I. Ij2. 1/3 and I of. n:spectively. For each value of
II. stresses arc determined at six values of II, viz. II, = O. 0.2. 0.4. 0.6, O.l{ and I. It is seen
that for a given value of 11. tangential stress increases and radial stress decreases as a result
of increasing the hardening function. 11,. The pressure carrying capacity «(1, at r = a) is
substantially increased as II. increases. particularly at large values of the exponent n.

Figures 2;1. b. c and d present a simibr set of n:sults for the same shell as above
when partially plasticized up to j = 1.611. The influences of fI, and n are similar to those
observed in Fig. I. except that the pressure carrying capacity does not seem to be affected
by n for a given value of H•. Figure 3 summarizes the influence of H, and 11 on (11/ and (1, at
r = II for the fully plasticized shell (Fig. 3a) and the partially plasticized shell (Fig. 3b).

AN APPROXIMATE. GENeRAL SOLUTION

Careful inspection of the analytical solutions obt'lined earlier for i~ at the four values
of n enable the development of a general approximate solution that can be used at any
value of n. The approach here is based upon the observation that practical values of H, are
;llways less than unity and often less than 0.5 for many enginecring alloys. as can be seen
from Tables I and 2.

Consider firstly, eqn (16a) which provides the exact radial distribution ofi~ for n = 1/2.
Since H, < I. then fractions of H; appearing in cqn (16a) can be considered small enough
in comparison with (Z/t - I). particularly at radii far enough from the plastic front. Thus,
neglecting H;12 and H~ /4 yields thc following approximate cxpression for i;, at n = 1/2:

(19a)

Consider eqn (17b) which providcs the exact distribution of i;, for n = 1/3. Neglecting the
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hg. I. Distrihutions of radial and tangcntial strcsscs in a fully plasticil.cd shell (1 = 2u) at various
valucs of II, and 1/: (a) /I = I, (h) II = I/~. (c) /I = 1/3. and (d) II = 1/4.

term 411,1/27 in comparison with (z/2 - I) ~ yields the following approximate expression
for f;(,' at n = 1/3:

( 19b)

Consider now, eqns (ISb and c) which provide the exact distribution of 1:(,' for n = 1/4. In
eqn (Ilk), neglecting (lIj4)4 with respect to «Z/2-1)!3)' in the square root term yields:

K~ = ~H~(t)"~{[1 + i!!.{~.)~_]I!' _[1_ '!94)2]'!J}
- , 3 (,/1(3) 12 (1/113)1,2' ( 19c)

where (z/2 -I) is denoted by 1/1. Since (H,/4) 2/(1/1/3) , ~ is much less than unity at radii far
enough from the plastic front, expansion of the cubic root terms by (I + x)m ~ I + m' x for
x« I and simplifying yield:

.' (1I,~/4)~ II: (ZZ-I)I~

1\- = zii=!' 4K' =---HH.f--

Substitution into eqn (ISb) gives:

(19d)
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various valu.:s of It. ;lIld 1/: (a) 1/ I. (hII/o 1,2. (.:) 1/ I 1. and (d) 1/ Lot.

Neglecting (11,/4)2 with respect to (Z(2_1)'2 in the square root term and also neglecting
H,/4 with respect to (Z/2 - I ),,4 in the resulting expression yield the final approximate
relation as:

I;~ = (Z/2-1)-II,(Z(2-1)' 4. ( 19f)

It is worth noting that eqn (15a). which gives the exact distribution of cit for n = I. can
also be rewritten as:

i.e = (Z/2-1)-II,(z/2-1). (19g)

provided that H, « I such that 1/( 1+ fI,) ~ I -II,. Therefore. at relatively large values of
H,. the approximation provided by eqn (19g) will be poor at " = I.

Inspection of eqns (19a. b. f and g) reveals that a simple general pattern is emerging
for approximate description of c;, at any value of the exponent n. viz.

I;;' = (z/2 -I) -H,' (z/2 -I)". (20)

A number of important points are worth noting at this stage:
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Fig. 3. Inlluelll;e of II. and fI on stresses at the inner radius of the shell (h/a = 2. £ Y = 1000.
v = 0.3). (a) Fully plasticized and (b) partially plasticized.

(I) The first tcrm in eqn (20) is the well-known perfect plasticity solution for E{;.
Therefore. the second term represents a quantification of the inhibition of plastic strain
dcvelopment due to hardening.

(2) Neglecting fractions of positive powers of H, in comparison with positive powers
of (Z/2- I) is quite valid at radii located too far from the plastic front. However. at radii
close to the plastic front. (Z/t - I) also becomes vcry small and the above approximation
is not strictly valid. The resulting errors in i~ are not likely to be great since i~ itself is quite
small in the vicinity of the plastic front.

(3) Inspcction of eqn (20) indicates that if. = 0 at two values of Z; at Z = t. i.e, at
the plastic front and also at Z = Z· where

(21 )

This implies that i& is negative in the zone bounded by t < Z < Z·, Since negative
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er---r--""T"""--r--~--..,...-~

" 4-:,,..
2

0.1 0.2 0.3 0.4 0.5
Hs

Fig. 4. Variation of (f-r·}jf (%j with H, and n.

pl.tstic strain cannot be permitted. I::; will be taken as zero in the zone bounded by
2 < Z < Z·, Therefore, a clearer statement of the approximate solution will be:

i: = (Z/2-1)-II,(z/2-1)" for Z· < Z < I

i: = 0 for 2 < Z < Z·.

(22a)

(22b)

The ratio 2/z· can be very close to unity depending on II, and n. Figure 4 shows the
variation of the relative difference between i and ,. (corresponding to Z and Z*, respec
tively). with H, at various values of n. Generally, the relative error is quite small with its
value becoming larger as 1/, increases and n decreases simultaneously. At fI = I, note that
(i-,·)/i = O. whatever the value of H,. Since the approximate solution has been shown to
be poor at II = I when relatively large values of II, arc encountered [see eqn (19g»). it
appears that the proximity between ,. and i cannot be used alone .IS a sole measure of the
accuracy of the proposed approximate solution.

(4) Although eqn (20) is derived here, starting from exact solutions at some particular
values of the exponent fI, it is believed that the above approximation is valid for any value
of 11 as it probably amounts to a first approximation to the solution of the non-linear
relation provided by eqn (14). A detailed comparison between exact and approximate
solution is presented in the following.

COMPARISON BETWEE:-I EXACT AND APPROXIMATE SOLUTIONS

A comparison between the exact solutions developed earlier and the approximate
solution is illustrated for a tube with h/a = 2. rIa = 2, £/ Y = 1000 and v = 0.3. A rep
resentative value of II, = 0.3 is adopted and the comparison is made for three different
values of the exponent fI: fI = 1<!. I 3 and 14 as shown in Figs 5'1, band c. respectively.
In general. .Igreement between exact and approximate distributions of (1". (1, and /:{.' is
quite satisfactory. The maximum discrepancy in 0'0 and I:: is confined to the vicinity of the
plastic front while the maximum discrepancy in 0', is at the inner radius of the sphere.

An overall picture of the performance of the approximate solution is provided by the
results given in Table 3, which compares the pressure carrying capacity as predicted by
exact and approximate solutions for a fully plasticized shell (h/a = 2, £/ Y = 1000, v = 0.3)
at various values of II, and n. The pressure predicted by the approximate solution exceeds
the exact pressure slightly. Figure 6a shows the percentage error in pressure against H, at
n = I, 1/2. 1/3 and 1/4. The errors in approximate pressure are seen not to be excessive,
except when H, and n become relatively large. Notice in particular, the poor performance
of the approximate solution at n = I when H, exceeds about 0.2.
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'Lthlc 3. Appnlximatc/exact pressure (1'/ Y) fur a fully plasticized sphere wilh hili =:!.
E/ y= 1000 and v = 0.3

" II. = 0.1 (I.:! 0.3 0.4 0.5

14 1.5·B/I.539 1.69K; 1.6K5 1.850: 1.8:!4 1.999/1.955 :!.144/2.081
\ 13 1.553; 1.5411 1.718/1.702 1.88:!j1.847 2.043/ I.984 2.201/2.114
L2 1.578, 1.57\ 1.769/1.743 1.%011.903 2.150/2.053 2.337/2.1'))
I 1.715, 1.685 :!.()·0,1.933 :!.37L'2.143 2.698/2.3:!6 3.027/:!.480
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Fig. 6a. Variation of percentage error in pressure carrying capacities with H. and fl.
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Fig. 6b. Variation of percentage error in work ratios WwhWrr with 11, and n.

Table 4. Appro:timate/cxact work ratio U'w./ Woo for a fully plasticizcd shcll with h/(/
E/ Y = !OOO and v = 0.3

n 11, = 0.1 0.2 0.3 0.4 0.5

1/4 1.051/1051 1.088,1.093 1.I16/1.114 1.133 1.148 1.141/1.165
1/3 1.060/1.061 1.106/1.109 1.138/1.147 1.15R,'1. 174 1.168/1.193
I '~ 1.082/1.081 1.146/1.144 1.1 R9/1.191 1.214 1.214 1.221/1.146I-
I 1.176( 1.163 1.293/1.261 1.347/1.316 1.340 1.343 1.171/1.351

Another plausihle measure of the adequacy of the approximate solution is the ratio
betwccn total internal dissipation of work in a spherc made from a work hardcning material
Wwh and work dissipatcd in n similnr sphere made from a perfectly plastic material W"".
Tablc 4 gives the valucs of this work ratio as predicted by exact and approximatc solutions
for a fully plasticized sphere (hla = 2, £1 Y = 1000 and v = 0.3) at various valucs of II, and
the four values of the exponent fl (/I = I, 1/2, 1/3 and 1/4). The percentage errors between
cxact and approximatc values of W"hl W"" arc shown in Fig. ob against II, at the differcnt
valucs 01'/1. Thc errors in total dissipHtcd work arc quite small for /I = 1/2, 1/3 and 1/4 but
arc highly dependent on fl, for n = I.

The above analysis shows that the approximate solution can be used with confidencc
for values of fl, less than about 0.5 and values of the exponent fl not close to unity.
Naturally, these limitations can be relaxed depending on the accuracy required. Fortunately,
values of 1/, and /I for many engineering metals lie within the above limits, as can be seen
from the data of Tables I and 2. Adequacy of the approximate solution is checked above
for a fully plasticized shell. For a partially plasticized shell, the accuracy of the approxi
mation will depend upon the position of the plastic fronL Clearly, if (ZIZ - I) is relatively
small because the plastic front is too close to the inner radius of the shell, the resulting
errors in the approximate solution may not be tolerated. For these cases oflimited plasticity,
one has to rely on the exact solutions provided here for a wide range of the exponent fl.

Finally, two examples of the application of the approximate solution to ,letual materi'lls
arc shown in Fig. 7 for partially plasticized spheres Va = 1.8). where actu'll material d'lta
of 304 stainless steel and 6061-0 aluminium arc used.

DISCUSSION AND CONCLUSIONS

Exact and approximate distributions of plastic strain in similar clastic-plastic problems
can be obtained in a manner analogous to that presented here. An example of such problems
is reported by Megahed (1989) for a thick tube under internal pressure. Loading conditions
such as external pressure, radial thermal gradient and centrifugal forces can be included in
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Fig. 7. Examples of the appruximOl\<: distributions ofstresses and plastic strain in pOlrtially plasticized
shells (hi '= I.li) and using the OlctuOlI material properties of 304 55 and 6061-0 aluminium.

the analysis. Future work may also include the elastic-plastic unloading behaviour. This
will enable determination of realistic etimates of residual stresses which are usually deter
mined on the basis of isotropic hardening, which ignores the softening beh<lviour during
reverse loading as manifested by the Bauschinger effect.

The general approximate solution developed here provides a quick and reliable estimate
of elastic-plastic stresses and displacement for spheres made from the most common
engineering metals. It is worth noting that the development of the approximate solution
could not have been possible without the exact solutions developed earlier in the paper.
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